Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In recent years, microfluidic technologies have emerged as a powerful approach for the advanced synthesis and rapid optimization of various solution‐processed nanomaterials, including semiconductor quantum dots and nanoplatelets, and metal plasmonic and reticular framework nanoparticles. These fluidic systems offer access to previously unattainable measurements and synthesis conditions at unparalleled efficiencies and sampling rates. Despite these advantages, microfluidic systems have yet to be extensively adopted by the colloidal nanomaterial community. To help bridge the gap, this progress report details the basic principles of microfluidic reactor design and performance, as well as the current state of online diagnostics and autonomous robotic experimentation strategies, toward the size, shape, and composition‐controlled synthesis of various colloidal nanomaterials. By discussing the application of fluidic platforms in recent high‐priority colloidal nanomaterial studies and their potential for integration with rapidly emerging artificial intelligence‐based decision‐making strategies, this report seeks to encourage interdisciplinary collaborations between microfluidic reactor engineers and colloidal nanomaterial chemists. Full convergence of these two research efforts offers significantly expedited and enhanced nanomaterial discovery, optimization, and manufacturing.more » « less
-
Lead halide perovskite (LHP) nanocrystals (NCs) are considered an emerging class of advanced functional materials with numerous outstanding optoelectronic characteristics. Despite their success in the field, their precision synthesis and fundamental mechanistic studies remain a challenge. The vast colloidal synthesis and processing parameters of LHP NCs in combination with the batch‐to‐batch and lab‐to‐lab variation problems further complicate their progress. In response, a self‐driving fluidic micro‐processor is presented for accelerated navigation through the complex synthesis and processing parameter space of NCs with multistage chemistries. The capability of the developed autonomous experimentation strategy is demonstrated for a time‐, material‐, and labor‐efficient search through the sequential halide exchange and cation doping reactions of LHP NCs. Next, a machine learning model of the modular fluidic micro‐processors is autonomously built for accelerated fundamental studies of the in‐flow metal cation doping of LHP NCs. The surrogate model of the sequential halide exchange and cation doping reactions of LHP NCs is then utilized for five closed‐loop synthesis campaigns with different target NC doping levels. The precise and intelligent NC synthesis and processing strategy, presented herein, can be further applied toward the autonomous discovery and development of novel impurity‐doped NCs with applications in next‐generation energy technologies.more » « less
-
Abstract The optimal synthesis of advanced nanomaterials with numerous reaction parameters, stages, and routes, poses one of the most complex challenges of modern colloidal science, and current strategies often fail to meet the demands of these combinatorially large systems. In response, an Artificial Chemist is presented: the integration of machine‐learning‐based experiment selection and high‐efficiency autonomous flow chemistry. With the self‐driving Artificial Chemist, made‐to‐measure inorganic perovskite quantum dots (QDs) in flow are autonomously synthesized, and their quantum yield and composition polydispersity at target bandgaps, spanning 1.9 to 2.9 eV, are simultaneously tuned. Utilizing the Artificial Chemist, eleven precision‐tailored QD synthesis compositions are obtained without any prior knowledge, within 30 h, using less than 210 mL of total starting QD solutions, and without user selection of experiments. Using the knowledge generated from these studies, the Artificial Chemist is pre‐trained to use a new batch of precursors and further accelerate the synthetic path discovery of QD compositions, by at least twofold. The knowledge‐transfer strategy further enhances the optoelectronic properties of the in‐flow synthesized QDs (within the same resources as the no‐prior‐knowledge experiments) and mitigates the issues of batch‐to‐batch precursor variability, resulting in QDs averaging within 1 meV from their target peak emission energy.more » « less
An official website of the United States government
